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5 AND INFINITE SERIES
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With a bit more cunning, the Limit Comparison Test becomes conclusive. A series
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(This limit is evaluated using 1"Hépital’s Rule or by recalling that In k grows more
slowly than any positive power of k.) Now case (2) of the limit comparison test
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applies; the comparison series EEE converges, so the given series converges.
Related Exercises 27-38 <
Guidelines

We close by outlining a procedure that puts the various convergence tests in perspective.

Here is a reasonable course of action when testing a series of positive terms > a, for
convergence.

series, we O s L. Begin with the Divergence Test. If you show that lim a, # 0, then the series di erges
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* Check also for a telescoping series.

3. If the general kth term of the series looks like a function you can integrate, then try the
Integral Test.

4. If the general kth term of the series involves k!, k¥, or a*, where a is a constant, the Ra-
tio Test is advisable. Series with k in an exponent may yield to the Root Test.

5. If the general kth term of the series is a rational function of (or a root of a rational

function), use the Comparison or the Limit Comparison Test. Use the families of series
given in Step 2 as comparison series.

These guidelines will help, but in the end, convergence tests are mastered through prac-
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SECTION 8.5 EXERCISES
EView Questions
Explain how the Ratio Test works.
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INFINITE SERIES i 70-75. A glimpse ahead to power series Use the Ratio Test c. Use the results of parts (a) and (b) to evaluate the seri
g ¢ SEQUENCES AND hoice to determine . A glimp. p . e results of parts (a) and (b) to evaluate the series
576 e test Use the test of your choic to determine the values of x = 0 for which each series
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i whether the following series comverse converges. Sin (1 - %).
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sequence of partial products converges)

of the region under the curve y = x” between x = Qand x = 1,
where p is a positive integer. Using arguments that predated the
Fundamental Theorem of Calculus, they were able to prove that
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0.0001 g S - ArES ATk " 5 Our previous discussion focused on infinite series with positive terms, which is certainly
ot ,‘2.‘1 k+4 =+ 1 Series of squares Prove that if S, is a convergent serics 0 an important part of the entire subject. But there are many interesting series with terms of
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series using the Divergence Test? versa. Clearly, infinite series could have a variety of sign patterns, so we need to restrict

our attention.

Fortunately, the simplest sign pattern is also the most important. We consider alter-
nating series in which the signs strictly alternate, as in the series
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